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ABSTRACT

The radlation pattern of a TEM mode parallel-plate waveguide is
analyzed by wedge diffraction theory in conjunction with a slope correc-
tion term. This slope correction term is the diffraction by a conduc-
ting wedge due to an incident wave with sinusoidal amplitude variation
over the wave front. Such a wave is referred to as a slope wave. The
slope diffraction takes into account the nonuniform wave in calculating
second-order diffractions for the open-ended guide. The slope correction
term provides an improvement in the accuracy of the pattern in the
region near the plane of the aperture as compared to the previous wedge
diffraction calculations.
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'SLOPE. DIFFRACTION ANALYSIS OF TEM PARALIEIL-
PLATE GUIDE PATTERNS

I. INTRODUCTION

Radiation pattern analysis is a primary tool in the design of
antennas. Consequently, the development and improvement of methods of
analysis are of particular interest to the antenna designer. Small
aperture antennas such ags open-ended waveguides and slot antennas are
of particular interest in applications for missiles, space craft, and
airborne and reentry vehicles. The idealized two dimensional parallel-
plate waveguide which 1s treated below provides insight into the diffrac-
tion behavior of practical three-dimensional antennas. The research
reported here introduces a slope correction term which provides an
improvement in the accuracy of the parallel-plate guide pattern as
compared to the previous wedge diffraction calculations.?

The radiation pattern of the parallel-plate wavegulide shown in
Fig. 1 is considered in this report. The wedge angles WAL and WAZ2 may
be adjusted for various mounting configurations, and the guide is trun-
cated pervendicularly to the guide axis as shown in Fig. 1. Only the
TE.: waveguide mode is considered here; in this mode an incident plane
wave propagates parallel to the axis of the guide with polarization
perpendicular to the waveguide walls.

WA |
PLANE WAVE
H-> £
INCIDENT
WA?2

Fig. 1 ~ Geometry of a Parallel-Plate Guide



The TEM mode radiation pattern of a parallel-plate waveguide was
analyzed previously by wedge diffraction theory.* In this method, the
incident plane wave causes singly diffracted waves to emanate from each
edge. Doubly diffracted waves are produced by the incidence of the
singly diffracted waves on the opposite edges. FEach doubly diffracted
wave is approximated as the diffraction by an isotropic, eylindrical
wave incident on the edge. This approximation of the nonisotropic,
singly diffracted wave as an isotropic wave causes inaccuracy in the
radiation pattern in the region near the plane of the aperture, espe-
cially for guide widths on the order of A/2 or less.

Ryan and Rudduck® have obtained the radiation patterns of parallel-
plate guides with arbitrary geometry by including only the single and
double diffraction contributions. Rudduck and Yu® have included the
third order diffraction contribution and subsequently employed a self-
consistent method which includes all higher orders of diffraction from
each edge. The radiation patterns obtained by the above analyses have
been found to be satisfactory in general. However they do not describe
the pattern accurately in the region near the plane of the aperture
for small guide widths.

The purpose of the development in this report is to introduce a
slope correction term which improves the accuracy in the radiation
pattern of the waveguide in this region. The slope correction term is
formulated on the basis that the singly diffracted wave incident on
the opposite edge is approximated by the superposition of a uniform
cylindrical wave and a slope wave. The slope wave is defined as one
which has a sinusoidal variation over its wave front. The diffraction
of this slope wave is the slope correction term.

The validity of this formulation is demonstrated by the improved
accuracy of the radiation pattern analysis for this problem as compared
with the previous wedge diffraction analysis. The basis for the compar-
ison is the exact Wiener-Hopf solution® for the symmetrical thin-
welled parallel-plate waveguide by Wainstein® and an aceurate, although
approximate Fourier transform solution, for the parallel-plate guilde
mounted in an infinite ground plane by Nussenzveig.

The diffracted field from a conducting wedge due to slope wave
incidence is formulated in Chapter II. The slope correction is also
checked on an isolated half-plane and a 90° wedge by the surface inte-
gration techniquel® in Chapter III. Then the radiation pattern of a
parallel-plate wavegulide is analyzed in Chapter IV by the wedge dif-
fraction theory in conjunction with this slope correction term.

II. FORMULATION OF SLOPE WAVE DIFFRACTION
In this section the cylindrical slope wave diffraction is formu-

lated as a two dimensional problem. This slope wave has a cylindrical
wavefront and a sinusoidal amplitude variation as a function of angle



about the source. The diffraction of the slope wave by a conducting
wedge is employed such that the amplitude of the incident wave in the
direction of the edge of the conducting wedge is zero. The diffraction
of the slope wave is derived from the diffraction of a wniform cylin-
drical wave by a conducting wedge. TFor the uniform case, the total
field distribution u(p,p) at radial disbances from the edge which are
large compared to that of the line source as shown in Fig. 2 can be
expressed as

a~Jkp

Vo

(1)

u(o,9) [{v*(po,w—wo) + VB(po,w-vo,n)}

H+

{V*(po,\lf""lfo) + VB(po,ﬂf*'\lro,n)}]

LINE SOURCE

Fig. 2 ~ Diffraction by a Conducting Wedge



The geometrical optics wave is given by
exp jko cos(p + 2mN)

(2) V' (0,p) = if -n<Q+2mN<wfor N=0, 2 1, eoe
o otherwise

The diffracted wave for a conducting wedge of angle (2-n)x is given by

1 .
(3) Vg(p,0,n) = = E En/n FYD Iy /n(ke)cos £ g v(p,0)
=0
1 Q=20
where €4 =
2 a#o

and k = 2n/% is the free space propagation constant.

The plus or minus sign in Eq. (1) applies for the magnetic field
(T™M) or electric field (TE) orientated in the z direction, respectively.
The plus sign is chosen for the following development since only TM case
will be comnsidered here.

The cylindrical slope wave diffraction can be obtained by differenti-
ating the total field with respect to incident angle ¥o. A similar
technique was employed by Keller’ in which the plane wave diffraction
coefficient was differentiated with respected to incident angle Q.
Ufimtsov® has employed similar methods to obtain the secondary diffraction
for a strip. The differentiation of the geometrical optics wave with
respect to V5 is given by

() &a— V¥(o,0 £ Vo) = T jko sin(yv ® vo) V¥(Ps¥Eds)
o]

The term sin ¢ V*(p,@) is identified as the geometrical optics
glope wave Vi giving,

% sin(p + 2mN) exp [ jko cos(p + 2mN) if
(5) Vs(ps9) = - < @+ 2mN < =« for N =0, 2Loees
0 otherwise,

The slope diffracted wave Vg(p,p,n) of a conducting wedge with
angle (2-n)x can be obtained in a similar manner with the normaliza-

tion factor ¥ jkp, giving,



s 1 O
- jkp a.q),o VB(D,CP,n)

- m/n .
"o e T ) (e )
m=0

V:'(paw) .

(6) Vs(p,(P,n)

Equation (6) converges rapidly for small values of p, i.e.,p < A. How-
ever, for large values of p, the slope diffracted wave can be obtained
in a similar way by using the asymptotic form of the diffracted wave
Vp(p,9,n). Therefore, the total field distribution Ug at radial distance
p from the edge of the conducting wedge which is large compared to the
distance p, of the slope wave line source is given by

e-jkp
Vo

- [V: (po)\lr + \p'o) + VS(DO,W + \lfobn)]} .

(7) Ug(p,0) = {[vg (Pos¥ = Vo) + Vgl(pgs¥ - wo,n)]

IIT. PATTERN ANALYSTS FOR A SINGLE EDGE

In this section, the diffraction pattern of a half-plane, i.e.,
n =2, and a 90° wedge, i.e., n = 1.5, due to a nonuniform singly
diffracted wave incidence is formulated by use of wedge diffraction
in conjunction with the slope correction term. The validity of this
formulation is checked numerically by the surface integration tech-
nique,®21° The geometries for the half-plane and the 90° wedge are
shown in Figs. 3 and 4, respectively. The singly diffracted wave from
edge 2 will be taken as the source for diffraction from edge 1.

The nonuniform, single diffracted wave from edge 2 is obtained by
the diffraction of the plane wave incident on edge 2 from the waveguide
giving

1
(8) HE( )(p,e) = VB(p,ﬁ - 6,11) .
The angular variation of this wave is obtained by suppressing the factor

o~ I (sprn/h)

N 2nkp

large values of kp(1l + cos ¢). This gives

in the asymptotic expansion of Vp(p,p,n) which is valid for

1 -
(9) Rg )(9) = % sin % / (cos % - cos EEQ 0 <o<ZX

o
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Pig. 3 - Nonuniform Wave Diffraction of a Half-Plane
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Fig. 4 - Nonuniform Wave Diffraction of a 90° Wedge



The nonuniform cylindrical wave expressed by Eq. (9) can be approximated
as a uniform cylindrical wave and a cylindrical slope wave for directions
near 6 = 90°, giving,

(1)

(10) (6) =y + C2 sm(z-ie)

where C, is the magnitude of the uniform cylindrical wave and Cz is the
magnitude of the cylindrical slope wave. Having the factor

-j_(kp + X
e L suppressed, the values of C, and Co are given by
JEﬂkp

1

(11) 6 =), s
2

and

(1)

_-dRz (9)

(12) L G2 ETm ,6 _ g

Thus the total far field or diffraction pattern due to the singly
diffracted wave from edge 2 in Figs. 3 and 4 may be expressed as

( ) o~k sin 0

(13) Rp(e) = + Rq(0) + 84(0)

in the region 0 < 6 < m -~ WAL,

where BK )(9) is given by Eq. (9). The factor ¢~ Jkh sin 6

refers the
phase o% the singly diffracted wave from edge 2 to edge 1.

The diffracted field due to the uniform cylindrical wave component
is given by

(1) Ry (0) = Cl[VB(h o + 2,n) + vg(h,o + gﬂ,n)] ,

and the slope correction term is given by

(15) sq(0) = cg[vs(h,e + g,n) - Vg(h,0 + %’l,n)] .



The magnitude and phase of the diffraction pattern for a half plane
due to the nonuniform cylindrical wave locabted at a dilstance h away
from edge 1 as shown in Fig. 3 are given in Tables I and II for h equal

to 0.3 A and 0.4 A, respectively. The diffraction pattern without the
- slope correction term (Eq. 15), which is denoted as double diffraction,
is also tabulated as shown. The results for the case of the 90° wedge
are given in Tables III and IV.

The diffraction patiterns due to the nonuniform singly diffracted
waves are compared with calculations by the surface integration tech-
nique®:19 in Figs. 5 - 8 and Tables I - IV. By the surface integration
method the far field due to this nonuniform wave is calculated by inte-
gration of the field on the surface S shown in Figs. 3 and L. The field
on S was calculated by the wedge diffraction method; that is, the super-
position of the singly diffracted fields from edge 2 and the doubly
diffracted fields from edge 1 (the latter calculated by assuming uniform
cylindrical wave incidence from edge 2).

Slope diffraction 1s not included on the surface S since its effect
in that region is quite small as compared with the incident singly
diffracted wave. Furthermore, the approximation of the slope wave
diffraction is less accurate away from the direction of the incident
slope wave.

The diffraction patterns are plotted in Figs. 7 and 8 for the 90°
wedge. It is noted that the patterns calculated by including the slope
correction term agree well with those by the surface integration tech-
nique. Thus it is seen from these results that the slope correction
term improves the accuracy of the wedge diffraction analysis in the
region near the shadow boundary of the incident wave.

IV. ANALYSIS OF WAVEGUIDE PATTERNS

In this section the radiation pattern of a TEM mode parallel-plate
waveguide as shown in Fig. 9 is analyzed by wedge diffraction theory
in conjunction with the slope correction term. The diffraction from
the guide aperture is treated by superposing the diffracted waves from
each of the edges. The singly diffracted field from each edge is
obtained from the flane wave diffraction function VB(p,cp,n).l The singly
diffracted ray Rél (6) from edge 1 due to a unit-amplitude plane wave
incidence of the TEM mode is obtained from the asymptotic form of
Vg(p,p,n) as

(16) Rl(l)(e) = 3“1-1 sin 3;( T ~ <n+9>)




Guide Width 0.3 A

Guide Width O.h A

Tables I and II

Double

Surface

Theta Diffraction Cosizgzion Integration
Deé;ees Mag. Phase Mag. Phase Mag. Phase
4o 1.408 113.2 1.391 112.3 1.k00 111.9
60 0.863 89.6 0.854 86.2 0.882 86.5
80 0.5k9 71.9 0,600 65.4 0.611 67.1
90 0.436  63.9 o0.522 57.1 0.521 59.8
120 0.337 47.8  0.373 41.0 0.360 45,0
140 0.297 k2,1 0.317 35.6 0.307 39.9
160 0.274 39.0 0.287 33.1  0.271 39.1
Lo 1.h32 90.6  1.hh 90.1 1.k19 89.4
60 0.876 59.7 0.869 57.0 0.882 57 .0
80 0.545  37.7 0.583  31.8 0.5%  33.1
90 0.4l 28.4  0.498 22.2  0.498 2h.
120 0.312 10.2  0.339 L2 0.329 8.8
140 0.268 4,1 0.282 -1l.4 o.27h 2.0
160 0.245 1.0 0.253 -3.9 0.248 -0.1
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Guide Width 0.44563 A Guide Width 0,31831 A

Tables IIT and IV

meta o etion Covregtion Inﬁiéiiiion
Deéﬁées Mag. Phase Mag. Phage Mag. Phage
20 . 2,683 139.3 2.65h 139.2 2.679 139.1
Lo 1.323 103.5 1.293 10l.5 1.326 101.6
60 0.896  77.6 0.909 T7L.8 0.941  73.0
80 0.692  64.0 0.790 55.3 0.809  57.6
90 0.626 62,0 0.779  53.2 0.795  55.6
20 2.657 12,3 2,639 124k.,5 2.651 124.3
4o 1.302 7h.y 1,269 73 1.293 729
60 0.885 38.0 0.879 33.5 0.906  33.9
80 0.683  19.0 0.757 1.k 0.773 12.6
90 0.618 6.4 0.745 8.6 0.758 10.0
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Fig. 5 - Diffraction Pattern of a Half-Plane (h/A = 0.3)
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Fig. 6 - Diffraction Pattern of a Half-Plane (h/A = 0.4)
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Pig. 7 - Diffraction Pattern of a 90° Wedge (h/A = 0.3183)
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Fig. 9 - Geometry of the Parallel-Plate Guide

-3 + X
The factor gi(-]-S-Fi———.,;—)-
‘\/2ﬂtkp

veriations are of interest. The subscript 1 denotes edge 1 and the
superscript (1) denotes the first order diffraction due to the incident
plane wave. Similarly, the singly diffracted ray from edge 2 is
obtained as

is suppressed in Eq. (16) because only angular

Lo 1
T

- -COS(ﬁ 9)
nNo No

The direction 6 = 0°corresponds to the d.irect:u.o f the geometrical
optics rays. It is noted that the (15xd_1v1dua.1 rays (e) and Rg(e ) (6)
diverge at 6 = 0 yet the sum of R\ (6) and Rg(lg‘(e) with the same phase
reference expresses the effect of the geometrical optics rays as given

by
’m e . -
[ (1)<9) e J—é— - + Rgl)(e) e-a2& . 9]
o- O

1 7 1 7
h - =— CcOL == - _=_ cot =—
Jkh 2n; n; 2np no

(M) py = L
(17) Ry /(e) o sin — na|

(28) r{*)(0) = Lim

16



where e @kh/ 2) sin 6 refers the phase to the center of the guide aperture.

The singly diffracted wave from edge 1 R(l)(e) illuminates edge 2 giving

rise to the doubly diffracted wave R (2)6), and R (1)(6) causes R( )(9)
in a similar manner.

The formulation of the doubly diffracted wawe was discussed in

the previous section. Employing the notations as shown in Table V,
the total doubly diffracted wave from edge 1 is given by

(19) 7, (2)(0) = B{>)(0) + 5(*) (o)

2
where Rl( )(e) is the doubly diffracted wave due to the uniform compon-

ent and 81(2 (8) is due to the slope component of the incident singly
diffracted wave from edge 2. The uniform component of the diffraction

is given by
(20) R@ (8) = F@G[VB(h,e + -g,nl) + vB(h,e + %’—‘,nl)]

where

(21) él) = R(l) (n - 0g) = Rgl)(g)

is the value of the singly diffracted ray from edge 2 in the direction
of edge 1. The slope diffraction component is given by

(22) Sl@(e) = Saél) [Vs(h 6 + §:n1> - Vs (h>9 ¥ %"”)]

where

(1)
(23) sad)= 2% () l

d6 6 =5 -0g =

AVRE

is the slope of the singly diffracted. wave in the direction of edge 1.

The total doubly diffracted wave from edge 2 is obtained iIn a
similaxr way as

(2%) R25§2)(e) - & o) + =)o)

17




Teble V

Notation for Rays

Ray Description Source
Rgl) (8) Singly diffracted ray from edge 1 7
Rél) (9) Singly diffracted ray from edge 2 Incident;
OR,\ ¥/ (6
Jad) = r() (-6g), s, =§5i ( )I plane
Wy
-3R2\1/ (0)] wave
Rzél) = ’f(x - og), Saél) =% 0 =x -6g |
Rge) (8) Doubly diffracted ray from edge 1 due to )
uniform component Rgél
s](_e) (6) Second order slope diffracted wave from )
edge 1 sl
R&Z) (8) Doubly diffracted ray from edge 2 due to )
uniform component Rlél
Sée) (6) Second order slope diffracted wave from
edge 2 Slél)
(
ngg) (0) = w&(e) + slz) (6)
) = 22 + 2

13




where

(25) e =l FVB (h’g i 9’”) ¥ Vs(hé—“ - 9:ne>
. | , i
- 7

Therefore, the total diffracted wave from the aperture may be
expressed as the superposition of the total diffracted rays from edges
1 and 2, giving

jkh sin 6
(27) 2(e) = (2 (@) + mfP0)e T

-jkh sin 6
+ (Rgl)(e) + 32%2) (9)>e 2

Each term in Eq. (27) contributes to the radiation pattern of the
parallel-plate wavegulde only in certain regions as given in Table VI.

Several terminologies such as double diffraction, continuous-
double and slope correction have been introduced in computing the
radiation pattern. This is done to classify the different contributions
of rays in appropriate regions as shown 1in Table VI. The radiation
pattern denoted as double diffraction includes the singly and doubly
diffracted rays from both edges. In the continuous-double result only
the doubly diffracted rays from the nearest edge are included. This
result thus gives a continuous pattern because the doubly diffracted
rays from the furthest edge are shadowed by the nearest waveguide wall.
The slope diffracted rays from the nearest edge are added to the
continuous-double to form the slope correction result.

The TEM radiation pattern of the symmetrical parallel-plate guide
(i.e., ny=n»=n) was calculated for various wedge angles. However, the
patterns for the thin-walled and ground-plane guides are treated more
extensively in the following sections.

A, Thin-wvalled Guide

The radiation patterns for the thin-walled case are compared in
Figs. 10 to 14 for the three different formulations i.e., double
diffraction, continuous-double and slope correction. Results are given
for five values of guide width h, ranging from 0.1 to 0.5 A. TIn each
case the radiation pattern is normalized to unity at 6 = 0° with
normalization factor kh. The exact radiation pattern as calculated by the
Wiener-Hopf method® is also plotted as shown for comparison. The
magnitude and phase of the radiation patterns as calculated by the

19
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Table VI

-180° + WA2 < 8 < =-90° -90° <8< 0° 0* <6< 90° 90* < 9 < 180°-wAl
Double #2) (6, {2)(e) w20y, #{=)(0) r{)(),5)(6) Edge 1
pietraction | 280 (0), B (o) 1)), x82)0) w$)(e), ndtko) sage 2
Continuous Rgl)(e) Ri‘)(e), R(f‘)(e) 1 (0), R(12) (6) Edge 1
bowte | Do), x2e) w2 )e), &%)  5{o) Rdge 2
Slope w2 (o) §2(0), K9 (0), £2)0) | =)o), KD (0), (=)o) | mage 1
correction | 12)(0), 82)(e), (o) | w3)(e), 2)e), sf2)o)| ) o) Bdge 2
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Fig. 10 - Radiation Pattern for TEM Guide (n =2, h/A = 0.1)
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Fig. 11 - Radiation Pattern for TEM Guide

(n = 2, h/A = 0.2)
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Fig. 12 Radiation Pattern for TEM Guide

(n =2, /A =0.3)




Tablt VII

h = 0.3 A
T?gta Weiner Dovble Continuous s1;£é-_
Degrees Hopf Diffraction Double Correction
1.0 1.0 1.0 1.0 1.0
90 90 90 90
20 0.964 0.961 0.947 0.948
89.5 89.3 90.3 89.9
40 0.868 0.859 0.834 0.8hl
89.6 87.0 89.7 88.7
60 0.7h6 0.737 .0.703 0.72h
85.5 81.9 87.3 85.9
80 0.629 0.648 0.57h 0.617
80.9 72.9 82.0 81.1
90 0.578 0.520 0.520 0.575
T7.5 77.5 T7.5 77.9
100 0.53h 0.493 0.493 0.537
73.2 4.3 Th L 73.8
120 0.466 0.4h6 0.4h6 0.k
62.0 64,0 6L.0 62.6
140 0.h22 0.413 0.413 0.430
L7.h 49.5 k9,5 h7.9
160 0.397 0.393 0.393 0.406
29.8 32.0 32.0 0.3
180 0.390 - --- -—-
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Fig. 13 - Radiation Pattern for Tkl Guide (n =2, h/A = 0.4)
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Fig. 14 - Radiation Pattern for TEM Cuide (n =2, h/A = 0.5)




different methods for a guide width h = 0.3 A in Table VII.

It is to be noted that the radiation pattern calculated by the
Slope Correction method for the case h = 0.1 A does not agree well with
the exact solution. This is not surprising because it is beyond the
1limit of this formulation (the value of the guide width h is too small
to use this technique which is basically a high frequency approximation).
However, for guide width h greater than 0.2 A, it is evident that the
slope correction does improve the accuracy of the radiation pattern in
the region near the plane of the guide aperture, i.e., 60° < 6 < 120°.

The effect of slope correction vanishes as the guide width increases.
Hence, the radiation pattern calculated by the continuous-double formula-
tion agrees well with the exact solution for guide widths greater then
0.5 A. The radiation pattern calculated by the double diffraction
method is discontinuous at 6 = 90°, since the doubly diffracted wave
from edge 2, Rég)(e), is shadowed for 6 > 90° by waveguide wall #1.

Ryan and Rudduck® have discussed the contributions to the radiation

pattern calculated by the double diffraction method due to each component
of the diffracted waves in the different regions.

B. Ground Plane Guide

The radiation patterns of the parallel-plate waveguide mounted in
an infinite ground plane are shown in Figs. 15 to 22 for several values
of guide width ranging from 0.2 to 0.9 A. The radiation pattern of
this geometry has also been analyzed by Nussenzveig® by employing higher
order modes in a Fourier transform solution as shown in the Appendix.
The higher order modes are actually evanescent modes which do perturb
the fields in the aperture of the waveguide. Do Amaral and Vidal?ll
have obtained the coefficients of these higher order modes for guide
widths up to 0.6 A. Patterns obtained using the Fourier transform
approach are given in the figures.

It has been shown that the on-axis field i.e., 6 = 0°, is accurately
approximated by merely including the singly and doubly diffracted fields
from both edges.12 The normalization factor for this geometry is given

by
28) {1)(0) + &) (0) + &2 (0) + =@)(0) .

The radiation patterns calculated by the double diffraction,
continuous-double and slope correction are all normalized with respect
to Eq. (28). The magnitudes and the phases of the normslized patterns
are tabulated in Table VIIT for a guide width h = 0.3183 A.
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Fig. 15 - Radiation Pattern for TEM Guide (n = 1.5, h/A = 0,2228)
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Fig. 16 - Radiation Pattern for TEM Guide (n = 1.5, h/A = 0.3183)
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Table VIIT

h/A = 0.3183
eta . -
D:Z:rn:es Kirchhoff szzﬁ;z;n Di];‘:?‘g:.:lc-iion Cogzljﬁzgus- Coii'_z Eiion
1.0 1.0 1.0 1.0 0.972 0.969
75.68 75.78 T77.43 77.12
20 0.981 0.977 0.973 0.949 0.9h9
75.78 75.76 78.2h 77.41
4o 0.933 0.919 0,903 0.885 0.897
76, Ol 75.49 79.25 7772
60 0.880 0.857 0.825 0.807 0.841
76.36 Th. 43 79.78 78.01 -
80 0.8u6 0.817 0.778 0.7h2 0.809
76.58 71.73 79.29 78.27
90 0.841 0.811 0,776 0.719 0.805
76.61 70.0 78.18 78.33
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Fig. 17 - Radiation Pattern for TEM Guide (n = 1.5, h/A = 0.3502)
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Fig. 18 - Radiation Pattern for TEM Guide (n = 1.5, h/A = 0.4456)
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Fig. 19 - Radiation Pattern for TEM Guide (n = 1.5, h/A = 0.5411)
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Fig. 20 - Radiation Pattern for TEM Guide (n = 1.5, h/A = 0.7)
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Fig. 21 - Radiation Pattern for TEM Guide (n = 1.5, h/A = 0.8)
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Fig. 22 - Radiation Pattern for TEM Guide (n = 1.5, h/?\ = 0.9)
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The radiation patterns are also calculated by using the Kirchhoff
approximation in which the total field in the plane of the aperbure is
assumed to be the incident field and is zero on the remaining surface
of the aperture giving

(29) R(g) = Sin (2 kh sin 9)
1 kh sin 0

The Kirchhoff approximation is equivalent to the radiation pattern of
dominant TEM mode, i.e., neglecting the highér order modes.

Tt is noted that the radiation patterns calculated using the slope
correction term agree well with the Fourier transform analysis in the
region 60° < 6 < 90°. However, the patterns obtained by the double
diffraction formulation and the continuous-double formulation do not
always agree well with the Fourier transform analysis in that region.
The radiation pattern of the ground-plane guide is well approximated
by the double diffraction result in the region 0° < 8 < 40° as seen by
comparison with the Fourier transform analysis and the Kirchhoff
approximation. Since the higher order modes do not perturb the radia-
tion pattern significantly in the region 0° < 6 < 40°, the Kirchhoff
approximation predicts the field well in that region. However, the
higher order modes do influence the radiation pattern in the region
near 6 = 90°. The radiation pattern calculated by the slope correction
and the continuous-double formulation agree well for large values of
guide width, i.e., h = 0.7, 0.8, and 0.9 A, as shown in Figs. 20 to 22.
Thus for large values of guilde width, the continuous-double formulation
yields accurate patterns.

Third and higher order diffracted waves are not included in these
calculations. As seen by the accuracy of the slope diffraction analysis
which only includes up to second order diffractions, the higher order
diffraction effects are quite smali. Furthermore, these effects are
difficult to accurately analyze.

C. Parallel-Plate Guide With Wedge
Angles 80°, 60°, and 20°

It has been shown that the radiation patterns of the thin-walled
guide (i.e., zero wedge angle) and the ground-plane guide (i.e., 90°
wedge angle) as formulated by the slope diffraction analysis agree
closely with the Wiener-Hopf and the Fourier transform solutions,
respectively. Since the slope correction formulation is valid for -
arbitrary wedge angles, the radiation patterns of symmetrical guides
are plotted in Figs. 23 to 25 for a guide widbth h = 0.3 A and for wedge
angles of 80°, 60°, and 20°, respectively. Double diffraction and
continuous-double results are also plotted for comparison., Similar
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Fig. 23 - Radiation Pattern for TEM Guide (n = gﬁ

, h/A = 0.3)




6¢

A.A —
e — — — DOUBLE DIFFRACTION
O O O SLOPE CORRECTION
A A A CONTINUOUS DOUBLE

I Y N |

0.8 0.6 0.4 0.2

RELATIVE H-FIELD

Fig. 24 - Radiation Pattern for TEM Guide (n = %, h/A = 0.3)
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results are plotted in Figs. 26 to 28 for a guide width h = 0.k A.
There are no available calculations by other methods for these wedge
angles. However, based on the cases for wedge angles of 0° and 90°,
it is believed that the slope diffraction formulation yields accurate
results in the region near the plane of the aperture. Outside this
region the radiation pattern should be well approximated by the
double diffraction formulation.

V. CONCLUSIONS

In this publication the radiation pattern of the symmetrical
parallel-plate TEM waveguide 1is calculated by a slope wave diffraction
analysis. This analysis gives an improvement in the accuracy of the
pattern in the region near the plane of the guide aperture, as compared
to the previous wedge diffraction analysis. The comparison is based
on the exact solution (Wiener-Hopf technique) for the thin-walled guide
and a good approximate solution (higher order mode Fourier transform
formulation) for the ground plane guide. The radiation patterns obtained
using the slope diffraction analysis agree well with the above formu-
lations except for very small guide width, i.e., h < 0.2 A. TFor large
values of guide width, i.e., h > 0.7 A, the radiation pattern calculated
by the continuous-double formulatlon is adequate. The slope diffraction
analysis may also be applied to the unsymmetrical parallel-plate guide
with arbitrary truncation angles. This technique offers a general method
for analyzing diffraction by nonuniform incidence waves which occur in
antenna and scattering analysis such as edge illumination of reflector
antennas and interactions in slot and waveguide apertures.
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APPENDIX

The TEM radiation pattern of a parallel-plate waveguide mounted
in an infinite ground plane has been analyzed by H. M.. Nussenzveig
employing the Fourier transform method. Higher order modes are included
in this analysis for which the wave function in the guide is given in
terms of incident and reflected modes as

- -ik, X
(30) Ur(X,Y) = cos(ky,SY)e oy

o]

+ > ey cosli e’

n=0

The radiated fields of the waveguide are given by
(1) U11(R,0) ~ 3% cos GAGES (kB) (R » =)

where the radiation pattern A(y) is given in terms of the modal coef-
ficients as

(52) 800 =(8)a - 7277 sm | @ 2k
+ i Z(—l)n(mz “L)A(y B~y E)t an]

(33) and y = % = sin

(3k) K = fﬁ

Ky n

X K h

A
o]
>

(35) Tn =

The dominant mode radiation pattern reduces to the Kirchhoff
approximation Ry (6), giving

sin (3 kh sin 0)
4 kh sin @

(36) Re(6) =
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where the factor =

th e

-j(kR - ,’f)

2akR

is suppressed.

The coefficients an as shown in Eq. (33) were calculated by C.

Marcio Amaral and J. W. Bautista Vidalll,

tabulated for values of guide width up to 0.6 A.

These coefficients are

Table IX
h h ag e az
0.22282 0.7 =0.1202 =-30.3418 0.04148 -j0.06963 -0.01255 +j0.023L1
0.31831 1.0 =~0.03218 -jo.2634 0.06704 -jO.08465 -0.01949 +30.02889
0.35014 1.1 -0.01461 -jo.2h01  0.07620 -j0.08786 -0.02191 +jO.03024
0.44563 1.4 +0.01722 -3j0.1795 0.1042 -3jO.09173 -0.02919 +3j0.03276
0.54113 1.7 0.02905 -joO.1317 0.1305 =-j0.08706 =-0.03583 +j0.03309
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